Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Indian J Exp Biol ; 2014 Oct; 52(10): 952-964
Article in English | IMSEAR | ID: sea-153787

ABSTRACT

In vitro assessment showed that H. rhamnoides (HrLE) extract possessed free radical scavenging activities and can protect gamma (γ) radiation induced supercoiled DNA damage. For in vivo study, Swiss albino mice were administered with HrLE (30 mg/kg body weight) for 15 consecutive days before exposing them to a single dose of 5 Gy of γ radiation. HrLE significantly prevented the radiation induced genomic DNA damage indicated as a significant reduction in the comet parameters. The lipid peroxidation, liver function enzymes, expression of phosphorylated NFκB (p65) and IκBα increased whereas the endogenous antioxidants diminished upon radiation exposure compared to control. Pretreatment of HrLE extract ameliorated these changes. Based on the present results it can be concluded that H. rhamnoides possess a potential preventive element in planned and accidental nuclear exposures.

2.
Indian J Exp Biol ; 2013 Dec; 51(12): 1109-1119
Article in English | IMSEAR | ID: sea-150299

ABSTRACT

Plausible interactions between food contaminants and natural constituents in vivo and protective effect of polyphenols present in I. aquatica against carbofuran toxicity in Charles Foster rats were evaluated. Determinations based on antioxidant enzyme activities showed significant alterations in glutathione, glutathione peroxidase, superoxide dismutase and catalase in tissues (liver and brain) and plasma of pesticide treated group while polyphenolic extracts from I. aquatica (IAE) attenuated their activities when given alongwith carbofuran. IAE decreased enhanced lipid peroxidation levels in plasma and erythrocyte membrane and cholesterol levels in brain and plasma. IAE also minimized histopathological degenerative changes produced by carbofuran. While single cell gel electrophoresis showed that secondary metabolites in leafy vegetables produced a combinatorial effect with pesticide at cellular level, DNA fragmentation level in bone marrow cells showed a decline in the IAE treated rats. Food safety adversely affected by various chemical contaminants can be retained by plant polyphenols and secondary plant constituents that can be found together in bolus. Therefore, the present study gives an insight into the protective role of naturally found polyphenols against pesticide toxicity.


Subject(s)
Animals , Antioxidants/administration & dosage , Antioxidants/chemistry , Carbofuran/toxicity , Catalase/blood , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/enzymology , Glutathione Peroxidase/blood , Ipomoea/chemistry , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/enzymology , Male , Oxidative Stress/drug effects , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Polyphenols/administration & dosage , Polyphenols/chemistry , Rats , Superoxide Dismutase/blood
3.
Indian J Exp Biol ; 2012 Mar; 50(3): 209-215
Article in English | IMSEAR | ID: sea-145242

ABSTRACT

Protective effect of Moringa oleifera leaf extract (MoLE) against radiation-induced lipid peroxidation has been investigated. Swiss albino mice, selected from an inbred colony, were administered with MoLE (300 mg/kg body wt) for 15 days before exposing to a single dose of 5 Gy 60Co-gamma radiation. After treatments, animals were necropsied at different post irradiation intervals (days 1, 7 and 15) and hepatic lipid peroxidation and reduced glutathione (GSH) contents were estimated to observe the relative changes due to irradiation and its possible amelioration by MoLE. It was observed that, MoLE treatment restored GSH in liver and prevented radiation induced augmentation in hepatic lipid peroxidation. Phytochemical analysis showed that MoLE possess various phytochemicals such as ascorbic acid, phenolics (catechin, epicatechin, ferulic acid, ellagic acid, myricetin) etc., which may play the key role in prevention of hepatic lipid peroxidation by scavenging radiation induced free radicals.

SELECTION OF CITATIONS
SEARCH DETAIL